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Abstract: After a consideration of the previous works on the empirical mode decomposition (EMD) 
method, we proposed a method to generate intrinsic mode functions (IMFs) through a filtering algorithm 
based on the wavelet packet decomposition (GIFWPD), and on this basis, performed Hilbert spectrum 
analysis. The method generates IMFs of which each frequency band has the maximum of width but is not 
overlapped each other. We adopted the same conditions of IMF from the EMD method as the criterion of 
IMFs to be generated. But, in the proposed method, the IMFs are generated by a filtering algorithm based 
on wavelet packet decomposition instead of the sifting process in EMD. Some numerical simulations and 
comparisons are demonstrated in order to establish the applicability of the method. 
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1 Introduction 

The empirical mode decomposition (EMD) 
method was first proposed by Huang et al. in 1998 
[1]. The researchers introduced a novel conception of 
intrinsic mode function (IMF) and proposed the 
EMD method to decompose time series data into 
IMFs, and on this basis, developed a new kind of 
time-frequency spectrum analysis method for nonlin-
ear and non-stationary processes, namely, Hilbert-
Huang transform (HHT). After Huang et al.’s first 
study of the EMD method and the HHT, it has been 
widely applied to the field of stationary and non-sta-
tionary signal processing such as system identifica-
tion, damage detection, structural health monitoring 
and earthquake engineering etc [2-5]. 

Although the HHT has a great ability to extract the 
properties of nonlinear and non-stationary signals, 
however, the EMD method has still a number of prob-
lems that need further attention. First, the EMD will 
generate undesirable IMFs at the low-frequency re-
gion that may cause misinterpretation to the result. 
Second, the first obtained IMF may cover too wide 

frequency range (mode mixing) that the property of 
monocomponent cannot be achieved. Third, the 
EMD method cannot separate signals that contain 
low-energy components [6-8]. 

In recent years, some efforts have been made to 
improve these problems. Mode mixing is often a con-
sequence of signal intermittency. Wu and Huang [9] 
proposed a new noise-assisted data analysis, the En-
semble EMD (EEMD) method to overcome the scale 
separation problem without introducing a subjective 
intermittence test. The true IMF components are ob-
tained as the mean of an ensemble of trials, each con-
sisting of the signal plus a white noise of finite am-
plitude. While the EEMD offers great improvement 
over the original EMD, it also has still some problems 
to be resolved. In EEMD, the noise amplitude and the 
number of ensemble have great influence on results 
and the EEMD produced IMFs do not satisfy the 
strict definition of IMF. In addition to that, in our tri-
als, the EEMD turned out to be a time-wasting 
method, because, in general, an ensemble number of 
a few hundred will lead to a very good result. 

Zhang [10] proposed the fast filtering to decom-
pose signal into IMFs (FFDSI) method. In this 
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method, the fast Fourier transform (FFT) filters out 
IMFs from the original signal. In our trials, this 
method is not very effective for non-stationary sig-
nals, for example, such ones as contain a strong trend. 
That is because the method is based on Fourier trans-
form, of which application is limited only to linear 
and stationary signals. For non-stationary signals, the 
resulting Fourier transform will have little physical 
sense. Although FFDSI method has the drawbacks, 
yet we consider that its idea of generating IMFs by 
maximum frequency band-pass filtering is worth-
while to adoptable. If wavelet packet decomposition 
(WPD) is used instead of FFT, it will give better re-
sults. 

In this paper, we propose a method to generate 
IMFs through a filtering algorithm based on the 
wavelet packet decomposition(GIFWPD), and on 
this basis, perform Hilbert spectrum analysis. The 
method generates IMFs of which each frequency 
band has the maximum of width but is not overlapped 
each other. We adopted the same conditions of IMF 
from the EMD method as the criterion of IMFs to be 
generated. But, in the proposed method, the IMFs are 
generated by a filtering algorithm based on wavelet 
packet decomposition instead of the sifting process in 
EMD. The IMFs generated by the proposed method 
are strictly orthogonal to each other. 

This paper is organized as follows: In section 2, 
the method to generate IMFs through a filtering algo-
rithm based on wavelet packet decomposi-
tion(GIFWPD) was proposed and some numerical 
simulations are demonstrated in order to establish the 
applicability of the method. In section 3, comparative 
studies of time-frequency analysis by the short time 
Fourier transform (STFT), the Wigner-Ville distribu-
tion (WVD) and the proposed method are presented 
for a real voice signal, a typical nonstationary signal 
of which frequencies vary with time. Finally, we offer 
the conclusion in section 4. The simulation results 
show that the proposed method has a good ability to 
decompose a signal data into IMFs and can also be 
perfectly used for the Hilbert spectrum analysis of 
non-stationary signals. 

 

 

2 Generating IMFs through a filtering 
algorithm based on wavelet packet 
decomposition 

The wavelet packet analysis is a generalization of 
wavelet decomposition. 

The finally obtained approximation or detail por-
tion of wavelet packet decomposition tree is called 
“terminal node”. 

The naturally ordered terminal node does not 
match exactly the order defined by the number of os-
cillations (i.e. the order defined by the frequency) in 
wavelet packet analysis. So, for a frequency ordered 
analysis, it is convenient to define the frequency or-
der obtained from the natural one recursively[11,12]. 

At an enough decomposition level, each recon-
structed terminal node of the wavelet packet decom-
position tree becomes a narrow-band filtered sub-sig-
nal. The reconstructed terminal nodes corresponding 
to relatively higher frequency region will satisfy the 
IMF conditions well. If each of frequency bands of 
these terminal nodes is enough narrow, the sum of 
these two or more reconstructed nodes will also be 
narrow-banded sub-signal, and should still satisfy the 
IMF conditions. That is, it can be said that the sum of 
a certain number of reconstructed nodes correspond-
ing to relatively higher frequency region will also 
generate an IMF. According to ways of summing up 
the reconstructed nodes, a variety of decomposition 
into IMFs can be obtained. An approach of summing 
up the terminal nodes to guarantee the uniqueness of 
the decomposition into IMFs can be established by 
making the frequency band of each IMF as wide as 
possible but non-overlapped with each other. 

The below describes how to realize the above ap-
proach. First, the last terminal node (the rightmost 
node corresponding to the highest frequency band) is 
fixed as a reference node. The reconstructions of all 
terminal nodes starting from the first node (the left-
most node corresponding to the lowest frequency 
band) to the last node (i.e. reference node) are made 
in the time domain and all these reconstructions are 
summed up. Then we check if the sum satisfies the 
IMF conditions or not. Of course, it will not, because 
the firstly obtained sum is just the same as the origi-
nal signal. So, if not, the sum of nodes starting from 
the second node (next to the first node) to the refer-
ence node is again checked for the IMF conditions. If 
again not, the above procedure is repeated until the 
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sum of nodes starting from a certain node to the ref-
erence node satisfies the IMF conditions. According 
as the starting node from which the sum is computed 
moves towards the right hand, that is, towards the ref-
erence node, the corresponding frequency band of the 
sum of reconstructed nodes will decrease in width. If 
the decrease of width of frequency band reaches to a 
certain width, the corresponding summed signal (fil-
tered signal) should be an IMF, because, at least, the 
last one (i.e. reference node) is an IMF. The above 
procedure is repeated to filter the second IMF out of 
the remaining frequency band except the higher fre-
quency band of the first obtained IMF. And, in this 
way, the procedure is repeated until the non-oscillat-
ing signal appears. After finishing the whole proce-
dure, in results, we can obtain the IMFs of which each 
frequency band has the maximum of width but is not 
overlapped each other. 

The selections of decomposition level and the base 
function of wavelet packet decomposition are two 
optional points. In theory, the wavelet decomposition 
can be continued indefinitely. In reality, the decom-
position can proceed only until the individual details 
consist of a single sample or pixel. In practice, the 
suitable number of levels is selected based on the na-
ture of the signal, or on a suitable criterion such as 
entropy [11]. The selection of base function of wave-
let packet decomposition has an influence on the per-
formance of the above procedure. Based on our ex-
perience, the Daubechies wavelet, db 43 was the best 
selection in the implementation with MATLAB. And, 
for the frequency ordered analysis, we must define 
the frequency order because the naturally ordered ter-
minal node does not match exactly the order defined 
by the frequency in wavelet packet analysis. 

The whole procedure to generate IMFs by filtering 
based on wavelet packet decomposition can be estab-
lished as the following steps: 

(1) Select an enough decomposition level l and de-

compose the signal )(tx  into wavelet packet de-

composition tree. If necessary, find the best tree with 
the criterion of Shannon entropy. By rearranging the 
naturally ordered terminal nodes in order of decreas-
ing frequency, get the inversely reordered terminal 

nodes jT  )2,,,2,1( lNNj    with 1T  cor-

responding to the highest frequency band and NT  

corresponding to the lowest frequency band. Recon-

struct jT ),,2,1( Nj   to produce )(tu j  

),,2,1( Nj   in the time domain. Then we obtain 





N

j
j tutx

1

)()( . 

(2) Check if 



b

aj
j tuth )()(  (for the first itera-

tion, a  and b  are initialized as 1a , Nb  ) 

satisfies the IMF conditions or not. If )(th  does not 

satisfy the IMF conditions, set 1 bb  and repeat 

this step (2) until )(th  satisfies the IMF conditions. 

As discussed above, when b moves towards a (here, 

for the first iteration, 1a ), there should be at least 

one IMF. That is, for a certain value 1p , 





1

1

)()(
p

j
j tuth  should be satisfied with the condi-

tions for an IMF. 

If )(th  satisfies the IMF conditions, it is desig-

nated as 



1

1
1 )()()(

p

j
j tuthtc , the first IMF of 

the signal )(tx .  

(3) Separate )(1 tc  from )(tx  to get 

)()()( 11 tctxtr  . If )(1 tr  is still oscillating sig-

nal, )(1 tr  is treated as the original data )(th , and 

then, by resetting 11  pa , Nb   and repeat-

ing the above step (2), the second IMF 





2

1 1
2 )()(

p

pj
j tutc  can be obtained. Here, resetting 

11  pa , Nb   means that the second IMF will 
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be searched in the remaining frequency band except 
the higher frequency band spanned over by the first 
IMF. 

(4) Repeat the steps (2)-(3) n times to get n IMFs.  
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(5) If )(trn  is non-oscillating signal, terminate 

the loop. )(trn  is the residue term. 

Performing the above proposed algorithm, we can 
get the IMF decomposition formula of the signal 
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(1) 

Here 00 p . 

It is obvious that the obtained IMFs are orthogonal 
to each other due to the orthogonality of the wavelet 
packet base functions. For more details, consider a 
scalar product of arbitrarily selected two IMFs. 
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Here, )(tw jl  are wavelet packet functions, jklq  

are wavelet packet coefficients 

Eq. (2) equals to zero, for )(twml  is orthogonal 

to )(twnl  for nm  . That is, )(tci  is orthogonal 

to )(tc j  for ji  . 

The uniqueness of the decomposition into Eq. (1) 
is guaranteed by virtue of the method itself and it ob-
vious that the reconstructed data from the sum of all 
the IMFs equals to the original data. 

Some numerical examples show the effectiveness 
of the proposed method in comparison with the pre-
vious methods. In the following examples, 
Daubechies wavelet, db 43 in MATLAB wavelet 
packet toolbox, was used as wavelet base function. 

First, the proposed method is compared with the 
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EMD method for a signal of which some local ex-
trema is not enough apparent to be distinguished. Fig. 
1 shows the time histories of two vibration modes 

)(1 tx , )(2 tx  and the sum of )(1 tx  and )(2 tx  

with the expressions of 












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



)(2)(1)(

)5.122002.012sin(2002.02)(2

)3.042025.012sin(4025.022)(1

txtxtx

ttetx

ttetx





                     

(3) 

The damping ratio of )(1 tx , 0.025, is much big-

ger than that of )(2 tx , 0.002, and thus, as shown in 

the Fig. 1-c, the first vibration mode is so rapidly 
damped off that the local extrema can not be distin-
guishable in the trail of the summed signal )(tx . The 

IMFs obtained by the EMD method and the proposed 
method are shown in Figs 2 and 3 respectively. 

Fig. 1. Two vibration modes and their 

summed signal: 

(a) first mode )(1 tx ; (b) second mode )(2 tx ; 

and (c) summed signal )(tx . 

 

Fig. 2. The IMFs obtained by the EMD method: 

(a) first IMF; (b) second IMF. 

Fig. 3. The IMFs obtained by the proposed 
method: (a) first IMF; (b) second IMF. 

The simulation result shows that the proposed 
method is more capable of decomposing signal into 
vibration modes than the EMD method. The key to 
success lies in the fact that the proposed method is 
thoroughly based on the filtering by wavelet packet 
analysis and, therefore, can separate more accurate 
and reliable vibration modes independent of whether 
the local extrema of the signal exist or not. As a mat-
ter of fact, the EMD method, in itself, can not be said 
to be an algorithm for decomposing signal into vibra-
tion modes. It is but the method for IMFs. That is, the 
EMD method allows the mode mixing in the decom-
posed IMF because it only considers the IMF condi-
tions during the processing of signal decomposition. 
As can be seen in Fig. 2-a, the first IMF obtained by 
the EMD method is not a vibration mode, but, though 
allowing mode mixing, it surely is an IMF. On the 
other hand, the natural vibration modes of linear 
structure are, in general, harmonic functions with 
concentrated frequencies. If damping is heavy, the 
spectrum distribution of a vibration mode is not very 
ideal line spectrum but is narrow-banded one with a 
certain central frequency while satisfying the IMF 
conditions. So, the natural vibration mode can be re-
garded as a special IMF with a concentrated spectrum. 
The method proposed in this paper is more superior 
to the EMD method in separating the vibration modes 
of linear structures. That’s because the method can 
generate the IMFs on the principle of the complete 
separation of the frequency bands. Nevertheless, it 
does not mean that the proposed method is only suit-
able for the vibration mode problems. In later section, 
we will show that the method has a good capacity of 
processing the non-stationary signals, too, by illus-
trating an example of the time-frequency spectrum 
analysis for a real voice sound signal. For the sake of 
abbreviation, the proposed method is referred to as 
“GIFWPD” method standing for “Generating IMFs 
by Filtering based on Wavelet Packet Decomposi-
tion”. 

Next, the proposed GIFWPD method is compared 
with the FFDSI method [10] for a non-stationary sig-
nal with a strong trend. Fig. 4 shows two signals 

)(),( 21 txtx  and the sum of )(1 tx  and )(2 tx  

given by the following equation: 
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(4) 

As seen in Fig. 5, the FFDSI method failed to sep-
arate the correct IMF and residue component. This is 
due to the assumption of regularity, the characteristic 
peculiar to the Fourier transform on which the FFDSI 
method is based. The result of decomposition by the 
GIFWPD method for the same signal is shown in Fig. 
6. As can be seen in the Fig. 6, the GIFWPD method 
successfully separated the correct IMF and strong 
trend. 

Fig. 4. Two signal components and their summed 
signal: 

(a) damping sinusoidal signal )(1 tx ; (b) trend 

signal )(2 tx ; and (c) the summed signal )(tx . 

 

Fig. 5. An IMF and residue component obtained 
by the FFDSI: 

(a) first IMF; (b) residue component. 

Fig. 6. An IMF and residue component obtained by 

the GIFWPD method: 

(a) first IMF; (b) residue component. 

The tricks lie in the fact that the filtered signals 
through the wavelet decomposition don’t have to be 
always stationary, and in wavelet analysis, as the 
scale factor increases, the temporal resolution de-
creases, producing a better estimate of the unknown 
trend. And, furthermore, in case that the trend has a 
polynomial form like the above, the polynomial part 
is suppressed in the details of the original signal and 
it comes into play only in the approximation potion 
of the signal, provided the number of vanishing mo-
ments of the wavelet (for this example, the number is 
43 because db43 was used) exceeds the degree of the 
polynomial (for this example, the degree is 1). This 
means that the trend and the vibration modes are sep-
arated more effectively in wavelet analysis. 

 

 

3 Numerical simulations for time-fre-
quency analysis of non-stationary 
signals 
The main purpose of the non-stationary signal pro-

cess is to find the time-frequency laws of signals. In 
order to understand the spectrum varying with time, 
it is necessary to perform two-dimensional analysis 
of time and frequency of the signal. 

In the same way as the case of the EMD method, 
the GIFWPD method can also be directly used in the 
computation of the Hilbert spectrum. Although the 
only distinction is that the IMFs obtained by the 
GIFWPD method, instead of the EMD method, are 
used in the computation of Hilbert spectrum, yet it is 
the first essential to the Hilbert spectrum analysis. 

we will demonstrate that the GIFWPD method has 
a good capacity of processing the non-stationary sig-
nals by illustrating an example of the time-frequency 
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spectrum analysis for a real voice sound signal. Com-
parative studies of time-frequency analysis by the 
short time Fourier transform (STFT), the Wigner-
Ville distribution (WVD) and the GIFWPD method 
are presented. 

A time history of voice sound of “a-i” and its Fou-
rier spectrum are shown in Fig. 7.  

Fig. 7. Time history of real voice sound “a-i” and its 
Fourier spectrum. 

Fig. 8 shows the results of time-frequency analysis 
obtained by the STFT, the WVD and the GIFWPD 
method. The time-frequency resolution of the spec-
trogram in Fig. 8-a is not so good and the Winger-
Ville distribution in Fig. 8-b has the cross-terms, so, 
it is difficult to accurately define the real time-fre-
quency curves. 

The requirement for most time-frequency methods 
is to estimate the time-frequency laws as accurately 
as possible by making the curves more compact and 
clear in the time-frequency plane. In view of this re-
quirement, the result of the Fig. 8-c gives a relatively 
satisfactory result. As seen in the Fig. 8-c, the Hilbert 
spectrum computed by the GIFWPD method pro-
vides a clear indication of how the main frequencies 
of the voice sound signal are change with the lapse of 
time while the sound of “a” is converted to the sound 
of “i". This result of time-frequency analysis illus-
trate that the computation of the Hilbert spectrum by 
the GIFWPD method can be a good approach for 
non-stationary spectrum analysis. 

 

 

4 Conclusion 
The proposed GIFWPD method has a good relia-

bility of IMF decomposition even under some unfa-
vorable conditions compared with the previous meth-

ods. The method has a good ability to decompose a 
vibration signal data of linear structure into the natu-
ral vibration modes. And the method can be perfectly 
used in the Hilbert spectrum analysis for non-station-
ary signals, too. 

Some applications of the GIFWPD method illus-
trate that the method can be an effective and useful 
approach in stationary and non-stationary signal pro-
cessing. 

 

Fig. 8. Time-frequency analysis of real voice sound of “ai”: 
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(a) spectrogram; (b) the WVD; and (c) the Hilbert spectrum by the GIFWPD method.
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